Aim: Anticonvulsant Effect of Drugs by MES and PTZ Methods

References:

- 1. Goodman, L. S., & Gilman, A. (2018). Goodman and Gilman's The Pharmacological Basis of Therapeutics (13th ed.). McGraw-Hill Education.
- 2. Löscher, W., & Schmidt, D. (1988). Which animal models should be used in the search for new antiepileptic drugs? Epilepsy Research, 2(3), 145-181.
- 3. Turner, R. A. (1965). Screening Methods in Pharmacology. Academic Press.
- 4. Kulkarni, S. K. (1999). Handbook of Experimental Pharmacology. Vallabh Prakashan.

Objective:

To evaluate the anticonvulsant effects of drugs using the Maximal Electroshock Seizure (MES) method and Pentylenetetrazol (PTZ) induced seizure method in rodents.

Materials and Methods:

Materials:

- 1. Rodents (e.g., mice or rats)
- 2. Anticonvulsant drugs (e.g., Phenytoin, Valproate)
- 3. Electroconvulsiometer for MES
- 4. Pentylenetetrazol (PTZ) solution
- 5. Anesthetic agents (if required)
- 6. Personal protective equipment (gloves, lab coat, goggles)
- 7. Stopwatch
- 8. Data recording sheets
- 9. Control solution (e.g., saline)

Method:

MES Method

1. Preparation of Animals:

- Acclimate the rodents to the laboratory environment for at least one hour before the experiment.
 - Handle the animals gently to minimize stress.

2. Baseline Measurements:

- Record the baseline activity and behavior of the rodents.

3. Drug Administration:

- Administer the test drug intraperitoneally or orally, depending on the experimental design.
- Administer a control solution (e.g., saline) to the control group.

4. Induction of Seizures:

- After an appropriate time post-drug administration (usually 30-60 minutes), induce seizures using the electroconvulsiometer.
- Deliver a standard electrical stimulus (e.g., 50 mA for 0.2 seconds) through corneal electrodes.

5. Observation and Data Recording:

- Observe the rodents for the following phases of seizures: tonic flexion, tonic extension, clonic convulsions, stupor, and recovery.
 - Record the duration of each phase, particularly the tonic extension phase.

6. Post-Experiment Care:

- Monitor the animals until they fully recover from any seizure and drug effects.
- Provide appropriate post-experiment care as per ethical guidelines.

Sample Result Table:

Group	Tonic	Tonic	Clonic	Stupor	Recovery
	Flexion (s)	Extension (s)	Convulsions (s)	(s)	Time (s)
Control	5	12	8	20	40
Drug	4	6	5	15	35
Treated					

PTZ Method:

1. Preparation of Animals:

- Acclimate the rodents to the laboratory environment for at least one hour before the experiment.
 - Handle the animals gently to minimize stress.

2. Baseline Measurements:

- Record the baseline activity and behavior of the rodents.

3. Drug Administration:

- Administer the test drug intraperitoneally or orally, depending on the experimental design.
- Administer a control solution (e.g., saline) to the control group.

4. Induction of Seizures:

- After an appropriate time post-drug administration (usually 30-60 minutes), administer PTZ (80 mg/kg) intraperitoneally to induce seizures.

5. Observation and Data Recording:

- Observe the rodents for the following phases of seizures: myoclonic jerks, clonic convulsions, tonic convulsions, and death or recovery.
- Record the latency to the first myoclonic jerk, clonic convulsions, tonic convulsions, and the duration of each phase.

6. Post-Experiment Care:

- Monitor the animals until they fully recover from any seizure and drug effects.
- Provide appropriate post-experiment care as per ethical guidelines.

Sample Result Table:

Group	Latency to Myoclonic Jerks (s)	Latency to Clonic Convulsions (s)	Latency to Tonic Convulsions (s)	Recovery Time (s)
Control	45	60	75	100
Drug Treated	80	120	No tonic convulsions	150

Discussion:

1. Seizure Phases:

- MES primarily evaluates drugs effective against generalized tonic-clonic seizures by measuring the reduction in tonic extension.
- PTZ is used to assess drugs effective against absence and myoclonic seizures by measuring the latency to seizure onset.

2. Drug Efficacy:

- Effective anticonvulsants will increase the latency to seizure onset and reduce the duration and severity of seizures.

3. Comparative Analysis:

- Compare the control and drug-treated groups to assess the anticonvulsant efficacy.

Conclusion:

The MES and PTZ methods provide robust models to evaluate the anticonvulsant effects of drugs in rodents. Understanding these effects is crucial for developing effective treatments for epilepsy.

Precautions:

- Ensure ethical treatment of animals as per institutional guidelines.
- Calibrate the electroconvulsiometer properly to deliver consistent electrical stimuli.
- Handle animals gently to minimize stress and variability in results.