Aim: Effect of Drugs on Locomotor Activity Using Actophotometer

References:

1. Goodman, L. S., & Gilman, A. (2018). Goodman and Gilman's The Pharmacological Basis of Therapeutics (13th ed.). McGraw-Hill Education.

2. Turner, R. A. (1965). Screening Methods in Pharmacology. Academic Press.

3. Kulkarni, S. K. (1999). Handbook of Experimental Pharmacology. Vallabh Prakashan.

Objective:

To evaluate the effect of various drugs on the locomotor activity of rodents using an actophotometer.

Materials and Methods:

Materials:

- 1. Rodents (e.g., mice or rats)
- 2. Drugs for testing (e.g., CNS stimulants like amphetamine, CNS depressants like diazepam)
- 3. Actophotometer (digital or manual)
- 4. Control solution (e.g., saline)
- 5. Anesthetic agents (if required)
- 6. Personal protective equipment (gloves, lab coat, goggles)
- 7. Stopwatch
- 8. Data recording sheets

Method:

1. Preparation of Animals:

- Acclimate the rodents to the laboratory environment for at least one hour before the experiment.

- Handle the animals gently to minimize stress.

2. Baseline Measurements:

- Place each rodent in the actophotometer for a specified period (e.g., 5 minutes) to record baseline locomotor activity.

- The actophotometer counts the number of times the animal interrupts the light beams, giving a measure of locomotor activity.

3. Drug Administration:

- Administer the test drug intraperitoneally or orally, depending on the experimental design.

- Administer a control solution (e.g., saline) to the control group.

4. Observation and Data Recording:

- Place the animals in the actophotometer at specific time intervals (e.g., 15, 30, 60, 90 minutes) after drug administration.

- Record the locomotor activity (number of beam interruptions) during a fixed observation period (e.g., 5 minutes).

5. Post-Experiment Care:

- Monitor the animals until they fully recover from any drug effects.

- Provide appropriate post-experiment care as per ethical guidelines.

Results:

Time (minutes)	Locomotor Activity (Beam Interruptions)	Observations
	Control Group	Test Group
Baseline	300	310
15	295	250
30	290	200
60	285	150
90	280	100

Sample Result Table:

Note: This table assumes the test group is administered diazepam, a CNS depressant known to reduce locomotor activity.

Discussion:

1. Locomotor Activity:

- A decrease in beam interruptions indicates reduced locomotor activity, often due to CNS depressant effects of the drug.

- Conversely, an increase in beam interruptions would indicate increased activity, as seen with CNS stimulants.

2. Dose-Response Relationship:

- Higher doses of CNS depressants typically result in greater reductions in locomotor activity.

- Higher doses of CNS stimulants result in increased locomotor activity until toxic effects occur.

3. Behavioral Observations:

- Note any additional behavioral changes such as sedation, hyperactivity, stereotypic behaviors, or other side effects.

Conclusion:

The experiment demonstrates the impact of various drugs on locomotor activity using the actophotometer. Understanding these effects is crucial for evaluating the therapeutic and side effects of CNS-active drugs.

Precautions:

- Ensure ethical treatment of animals as per institutional guidelines.

- Use consistent conditions for all tests to ensure reliable results.

- Handle animals gently to minimize stress and variability in results.